Bidirectional cross-regulation between the endothelial nitric oxide synthase and β-catenin signalling pathways
نویسندگان
چکیده
AIMS β-catenin has been shown to be regulated by inducible nitric oxide synthase (NOS) in endothelial cells. We investigated here whether β-catenin interacts with and regulates endothelial NOS (eNOS) and whether eNOS activation promotes β-catenin signalling. METHODS AND RESULTS We identified β-catenin as a novel eNOS binding protein in human umbilical vein endothelial cells (HUVECs) by mass spectroscopy and western blot analyses of β-catenin and eNOS immunoprecipitates. This was confirmed by in situ proximity ligation assay. eNOS activity, assessed by cGMP production and eNOS phosphorylation (Ser1177), was enhanced in β-catenin(-/-) mouse pulmonary endothelial cells (MPECs) relative to wild-type MPECs. eNOS activation (using adenosine, salbutamol, thrombin, or histamine), or application of an NO donor (spermine NONOate) or cGMP-analogue (8-bromo-cGMP) caused nuclear translocation of β-catenin in HUVEC as shown by western blotting of nuclear extracts. Exposure to spermine NONOate, 8-bromo-cGMP, or sildenafil (a phosphodiesterase type 5 inhibitor) also increased the expression of β-catenin-dependent transcripts, IL-8, and cyclin D1. Stimulation of wild-type MPECs with basic fibroblast growth factor (bFGF), vascular endothelial growth factor (VEGF), spermine NONOate, 8-bromo-cGMP, or sildenafil increased tube length relative to controls in an angiogenesis assay. These responses were abrogated in β-catenin(-/-) MPECs, with the exception of that to bFGF which is NO-independent. In C57BL/6 mice, subcutaneous VEGF-supplemented Matrigel plugs containing β-catenin(-/-) MPECs exhibited reduced angiogenesis compared with plugs containing wild-type MPECs. Angiogenesis was not altered in bFGF-supplemented Matrigel. CONCLUSION These data reveal bidirectional cross-talk and regulation between the NO-cGMP and β-catenin signalling pathways.
منابع مشابه
Association between T-786C polymorphism of endothelial nitric oxide synthase gene and level of the vessel dilation factor in patients with coronary artery disease
Various polymorphisms on endothelial nitric oxide synthase (eNOs) gene cause reduced production of NO, the endothelial relaxing factor, and may accelerate the process of atherosclerosis. The study designed to investigate the frequency of T-786C polymorphism of the eNOs gene in patients suffering from coronary artery disease (CAD) in north-west of Iran. One hundred twenty subjects including 60 p...
متن کاملSuppression of TAK1 pathway by shear stress counteracts the inflammatory endothelial cell phenotype induced by oxidative stress and TGF-β1
Endothelial dysfunction is characterised by aberrant redox signalling and an inflammatory phenotype. Shear stress antagonises endothelial dysfunction by increasing nitric oxide formation, activating anti-inflammatory pathways and suppressing inflammatory pathways. The TAK1 (MAP3K7) is a key mediator of inflammation and non-canonical TGF-β signalling. While the individual roles of TAK1, ERK5 (MA...
متن کاملRetraction Note: Association between T-786C polymorphism of endothelial nitric oxide synthase gene and level of the vessel dilation factor in patients with coronary artery disease
متن کامل
P-235: No Association of Endothelial Nitric Oxide Synthase (eNOS) -786T/C Polymorphism with Unexplained Recurrent Abortion in Iranian Women
Background: This is a case-control study to determine the relationship between endothelial nitric oxide synthase (eNOS) gene -786T/C polymorphism in women with unexplaiend recurrent abortion in comparison with healty women.Materials and Methods: 95 women with history of at least 2 unexplaiend recurrent abortion in the reproductive age range 20-35 years as patients group and 95 healty women (age...
متن کاملA novel bidirectional positive-feedback loop between Wnt–β-catenin and EGFR–ERK plays a role in context-specific modulation of epithelial tissue regeneration
By operating as both a subunit of the cadherin complex and a key component of Wnt signalling, β-catenin acts as the lynchpin between cell-cell contact and transcriptional regulation of proliferation, coordinating epithelial tissue homeostasis and regeneration. The integration of multiple growth-regulatory inputs with β-catenin signalling has been observed in cancer-derived cells, yet the existe...
متن کامل